Mark scheme - Resistivity

				$2=4 \times 10^{-2}$ This exemplar illustrates how even top-end candidates can lose a mark. The error in the powers of ten has been penalised by the examiner. This incorrect value has then been allowed through subsequent calculations. Two marks have been gained even though the final answer is incorrect. It is worth remembering the knowing your physics will always pay dividends.
		Total	2	
		Silicon will have a smaller number density, ORA Silicon will have a larger resistivity, ORA	B1 B1	Allow semiconductor for silicon; metal for nichrome Examiner's Comments High achieving candidates found this question straightforward. Some candidates on (a)(iii) used N instead of n. Part (b) caused the most difficulty with candidates either using 150 W rather than 0.150 kW or changing the time to seconds. (?) Misconception The worst acceptable line is either the steepest line that passes within all the error bars or the shallowest error line that passes within all the error bars.
		Total	2	
2		$L \rightarrow[m]$ and $A \rightarrow\left[m^{2}\right]$ or $L / A \rightarrow\left[m^{-1}\right]$ $\mathrm{kg} \mathrm{m} \mathrm{m}^{3} \mathrm{~A}^{-2}$	C1	Allow $\frac{\mathrm{kg} \mathrm{m}^{3}}{\mathrm{~s}^{3} \mathrm{~A}^{2}} \quad$ or $\mathrm{kg} \mathrm{m}^{3} / \mathrm{s}^{3} \mathrm{~A}^{2}$ Examiner's Comments The majority of the candidates effortlessly showed the base units for resistivity to be $\mathrm{kg} \mathrm{m}^{3} \mathrm{~s}^{-3} \mathrm{~A}^{-2}$. The structure from most was immaculate. It was good to see shortcuts being used too. Some candidates went straight to the units for resistivity ($\Omega \mathrm{m}$), and then multiplied the units given for resistance multiplied by m .

					The most common misconception, mainly at the lower end, was that the A in the resistance equation was the unit for current, the ampere A. This led to the incorrect answer $\mathrm{kg} \mathrm{ms}^{-3} \mathrm{~A}^{-1}$	
			Total	2		
1	a		Manipulate $\mathrm{R}=\mathrm{V} / \mathrm{I}$ and $\mathrm{R}=\rho \mathrm{t} / \mathrm{L}^{2}$ Rearrangement	M1 M1		
		i				
		ii	$\begin{aligned} & 0.13 \times\left(25 \times 10^{-3}\right)^{2} / 32 \times 10^{-3} \times 0.60 \\ & \times 10^{-3} \end{aligned}$	C1	Watch for attention to units	
		ii	$=4.2 \Omega \mathrm{~m}$	A1		
	b		Relate current to energy transfer / temperature increase More free electrons	B1 B1	AW	
			Total	6		
1	a		To ensure whole cross-sectional area or end of the conducting putty is in contact with the metal plate (AW)	B1	Not good electrical contact / reduces contact resistance / surface area Examiner's Comments Conversely, candidates struggled with an explanation as to why large metal plates were used. Many candidates discussed the electrical properties of the metal plates rather than understanding the need of the experiment.	
	ii		Use a (Vernier) caliper / micrometer (screw gauge) Repeat measurements along the conducting putty	B1 B1	Allow ruler	
			Examiner's Comments Most candidates discussed measuring the diameter with a named instrument at different points along the putty.			
	b	i		6.6	B1	Allow 6.56 Ignore 10^{-3} factor Examiner's Comments This part was answered well with the majority of the candidates recording the correct value to two significant figures. Some candidates made rounding errors or recorded spurious values.
		ii	$\left(\%\right.$ uncertainty $\left.=\frac{2 \times 0.001}{0.049} \times 100=\right) 4.1 \%$	B1	Ignore significant figures Allow 4 \% Examiner's Comments Most candidates were able to determine a percentage uncertainty although many did not multiply by 100 . Some candidates thought that the nearest millimetre meant 0.01 m instead of 0.001 m . Some	

				candidates did not realise that the percentage uncertainty in d needed to be multiplied by two.	
	i	Plots the missing point to less than a half small square	B1	Allow ECF from (i) Penalise blob of half a small square or larger	
		Draws straight line of best fit	B1	Allow ECF Expect to be balance of points about line of best-fit. Judge straightness by eye. Not a top point to bottom point line / not a top point to $(2.0,10)$ line Examiner's Comments The plotting of the missing point was accurately positioned by the majority of the candidates. There were major difficulties on drawing a suitable straight line of best fit; it is expected that there should be a balance of points about the line. Many lines could have been rotated. Lines that were drawn from the bottom plot to the top plot invariably had too many points below the line and were penalised. Some candidates did not draw straight lines.	
	ii	$\text { Gradient }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}$	M1	Not one $\mathrm{R} / \mathrm{L}^{2}$ value using the line or a data point Ignore POT for M1	
		$\text { gradient }=5700(5550-5850)$	A1	Allow ± 150 for the value of gradient Ignore units Examiner's Comments This question tested the practical skills of candidates to determine the gradient from their results. To score these marks candidates had to show their method. A large number of candidates failed to realise that the x-axis had a factor of 10^{-3}. Other common errors were to assume that the graph commenced at $(0,0)$. Good candidates clearly demonstrated their method by indicating the points taken, made sure that the length of their gradient was at least half the length of their line and correctly substituted into $\Delta y / \Delta x$.	
d	$\rho=5700 \times 1.9 \times 10^{-5}$ $\rho=0.108$ given to 2 or 3 sf $\Omega \mathrm{m}$		C1 A1 B1	Note: ECF from (ii) Allow any subject for equation Not use of data points from table	
			Examiner's Comments Candidates were expected to use the gradient that they had calculated in (ii) of the previous question part to determine a value for the resistivity; candidates who substituted a data point from the table did not score the first two marks. The final answer needed to be given to two or three significant figures. There was also a mark available for the correct unit; a good number of candidates scored this mark although a number of candidates did write the unit for density.		
		Total		12	

1 5		$\begin{aligned} & \left(\frac{1200}{300}\right) \\ & 4.0 \end{aligned}$	B1	Allow 1 SF
		$\begin{aligned} & 180=\frac{\rho \times 25}{6.7 \times 10^{-8}} \\ & \rho=4.8 \times 10^{-7}(\Omega \mathrm{~m}) \end{aligned}$	C1 A1	Note answer is 4.82×10^{-7} to 3 SF
		Total	3	
1		Any three from: - Total resistance of the lamps increases by a factor of 1.5. - Resistance of each lamp increases with current. - Resistance increases because of increased temperature. - Lamps are non-ohmic components.	B1×3	
		Total	3	
1	a	Best fit straight line drawn through the last 4 data points. Gradient of the line determined. $\boldsymbol{p}=$ gradient $\mathbf{x} A$, hence resistivity $=$ $(1.1 \pm 0.1) \times 10^{-6}(\Omega \mathrm{~m})$	B1 B1 B1	Allow a maximum of 2 marks if the line of best fit is drawn through all 5 data points.
	b	The actual resistance values will be smaller. The gradient of the graph will be lower. Hence resistivity of the metal will be smaller than the value in (b).	B1 B1 B1	
		Total	6	
1		$\begin{aligned} & R=3000+1500 \\ & V=12 \times 1500 / 4500=4(.0)(V) \end{aligned}$	C1 A1	$\begin{aligned} & \mathrm{R}=4500(\Omega) \\ & \text { or } I=V / R=12 / 4500=2.67 \mathrm{~mA} \\ & V_{1500}=2.67 \mathrm{~mA} \times 1.5 \mathrm{k} \Omega=4.0(\mathrm{~V}) \end{aligned}$
		$\begin{aligned} & V(=12 \times 1500 / 1600)=11.25(\mathrm{~V}) \\ & \Delta V=11.25-4.0=7.25(\mathrm{~V}) \end{aligned}$	C1 AO	
		Total	3	
1		$(P=V I=10.0 \times 0.030)$ power $=0.30(\mathrm{~W})$	B1	

				Allow 0.3 (W) without any SF penalty Allow 300 (W)
	ii	The component is (an NTC) thermistor. (As V or $/$ increases the) resistance of the component decreases Any one from: Component cannot be a diode / LED because of current in one direction only (AW) (As V or $/$ increases the) component gets warmer / increase in number density (of free charge carriers)	B1 B1 B1	Allow calculations at 5 V and 10 V to support this, ignore POT errors Examiner's Comments The question was effective in two parts. Use the data to determine the resistance of the component at different potential difference, and then use this data to make judgement in identifying the component. Most candidates gained two or more marks. Some descriptions went astray with mention of Ohm's law or I-V characteristics. A significant number of candidates gave good reasoning but spoilt their answers by opting for a diode, an LDR or a filament lamp. Exemplar 10 (ii) Analyse the data in the table and hence identify the component. as the potential dofferace :ner ir would get hoter, loweing the \qquad the curient incrosses. This exemplar illustrates how a brief answer can score maximum marks. This answer is from a grade C candidate. Answers from top'end candidates were verbose and supported by values of resistances.
		Total	4	
2	i	resistance $=1.80 / 0.026(=69.2 \Omega)$ $\text { resistivity }=\frac{69.2 \times 1.3 \times 10^{-7}}{0.75}=1.2 \times 10^{-5}(\Omega$	C1 A1	
	ii	Contact resistance due to croc clips hence the resistance in the circuit must be greater. or Heating of wire hence the resistance of the wire increases. or (Finite) resistance of ammeter hence the total resistance of circuit increases. or Actual length between croc-clips is shorter or $<0.75 \mathrm{~m}$; hence resistance of wire is greater.	B1	Allow: Correct zero error on meters (e.g voltmeter reading is 'higher' or ammeter reading is 'lower') hence the (determined) resistance is greater.

	ii	$\begin{aligned} & V=2.4(\mathrm{~V}) \text { or } V_{R}=3.6(\mathrm{~V}) \\ & I=0.30(\mathrm{~A}) \\ & \text { resistance }=8.0(\Omega) \end{aligned}$ OR $V=2.4(\mathrm{~V})$ and a potential divider equation / idea $\begin{aligned} & 2.4=\frac{R}{R+12} \times 6.0 \text { or } \frac{R}{2.4}=\frac{12}{3.6} \\ & \text { resistance }=8.0(\Omega) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Not $V=2.2(\mathrm{~V})$; misreading Allow ECF if $V=2.2(\mathrm{~V})$ is used Allow 8 (1 SF answer) Not $V=2.2(\mathrm{~V})$; misreading Allow ECF if $V=2.2(\mathrm{~V})$ is used Allow 8 (1 SF answer)
		Total	5	
	i	$\begin{aligned} & \text { current }=0.030(\mathrm{~A}) \\ & (I=\text { Anev }) ; 0.030=3.8 \times 10^{-6} \times 5.0 \times \\ & 10^{25} \\ & \times 1.6 \times 10^{-19} \times v \\ & v=9.9 \times 10^{-4}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1	Examiner's Comments Almost all candidates were familiar with the equation $/=$ Anev. The modal score here was two marks. Most scripts had well-structured answers. The final answer was often quoted to the correct number of significant figures and written in standard form. A very small number of candidates incorrectly calculated the current using 'current $=V R=3.0 \times 100=300 \mathrm{~A}$ '; this scored zero because of incorrect physics.
		The resistance (of the thermistor or circuit) decreases Current / / / ammeter reading increases because / $\propto 1 / R$ or number density (of charge carriers) increases Voltmeter reading does not change (because there is no internal resistance)	B1 B1 B1 B1	Allow $V=I R$ (any subject) and $V=$ constant Allow 'more electrons / more charge carriers' Allow voltmeter reading stays 3.0 (V) Examiner's Comments This question on the heating of a thermistor favoured the top-end candidates. Most candidates recognised that the resistance of the NTC thermistor decreased as its temperature was increased. The explanation of why the current increased lacked robustness. Some correctly gave the explanation as increased number density of free electrons' or successfully showed that current was inversely proportional to the resistance. The fate of the voltmeter reading baffled many candidates. The answer was simple, the voltmeter reading remained unchanged because the battery had no internal resistance. For many, the voltmeter reading increased because 'p.d. was proportional to the current'.
		Total	5	

		Level 3 (5-6 marks) Clear description and clear analysis of data There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some description and some analysis of data OR Clear description OR Clear analysis of data There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Limited description and limited analysis OR Some description OR Some analysis of data There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit	B1×6	Indicative scientific points may include: Description - Circuit showing supply, ammeter, voltmeter and resistance wire / coil - Measure I (in coil) with ammeter - Measure V (across coil) with voltmeter - Power (for coil) calculated: $P=V I$ - Resistance of thermistor either calculated using $R=V / /$ or measured with ohmmeter - Change P / change V/use variable power supply / use variable resistor (to change I) - Keep the number of turns of coil constant throughout / no draughts / wait until the resistance stabilises Analysis - $\lg P=\lg k+n \lg R$ (or natural logs \ln) - Plot a graph of $\lg P$ against $\lg R$ - If expression is correct, then a straight line with non-zero intercept - \quad gradient $=n$ - intercept $=\lg k$ - $k=10^{\text {intercept }}$ (or $k=\mathrm{e}^{\text {intercept }}$ for natural logs)
		Total	6	
		Level 3 (5-6 marks) Clear description and analysis There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some description and some analysis There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.	B1 \times 6	Indicative scientific points may include: Description Determine R_{0} using ice water mixture or* Record V and I for various temperatures If wire is not insulated some conduction through water/use insulated wire Use small current to minimise heating effect or connect to supply for short time for readings Stir the water Wait for temperature to stabilise/bath to come to equilibrium Avoid parallax errors when reading instruments Comment about large scale increments on instruments/digital meters for precision of measurements/AW

				At a varity of tempatiunes raco $0-100^{\circ}$ in in $10^{\circ} \mathrm{C}$ interale record the umentr valtage. of the uine. Do this when yau be keep the tepeature constont and to wire is also at this tempenturp. ie hold it at to lempenture for 1 mins before taking results. Alno atir the wate to enuue is is all to nome tempeature. Once you hare as reuulte for all temperatures. Repent trice mas and tuke arerages. Work out the resistanc Fo each lemperdtue uring $\frac{v}{F_{T}}=R$ Plot a graph of $\frac{B_{R}}{R_{\theta}}$ againat θ where R_{e} is the value you got for $10^{\circ} \mathrm{C}$ or os dose to this lemperctus you could get. plat a line of best fit o work out to fradias If it is a fraight lis then the relationship is true The gradent ahould be k and the y interient 1 This graph k gives the value for k. Ts improve accuraly yoje whouls repeat \# experment a matiple tines and tab in wreage gradient to gire a more acurate reuult. You should ass get your nater γ thens coit to $0^{\circ} \mathrm{C}$, or adbese panable t_{0} give a mare preies value for EO. About half of the candidates remembered to stir the heating water. Only a minority allowed time for thermal equilibrium to be reached with the heating removed before taking measurements. Many did not state how they heated the water which was important because a group described using the given nichrome wire and supply for this purpose. Many wanted to take the unnecessary precaution of lagging the beaker or using a lid to avoid heat loss. One sensible improvement suggested was to use a digital thermometer in place of the one in the diagram. The advantages of this change were not always explained. The candidates were able to explain how to process the data to obtain a value for k. Only a very few did not draw a graph. As in question 5b many are not clear about the difference between a linear and a proportional relationship. A good exposition describing a suitable graph with a y-intercept of R_{0} could be ruined by the statement that the graph showed that R was proportional to θ.
		Total	6	
2	i	$R=2.0+8.0=10(\Omega)$ $\begin{array}{ll} (l=1.2 / 10) ; & I=0.12(\mathrm{~A}) \\ (1.5=1.2+ & r=2.5(\Omega) \\ 0.12 \mathrm{r}) ; & \end{array}$	C1 C1 A1	Allow other correct methods Allow 2 marks for $4.5(\Omega)$; $R=18 \Omega$ with $I=0.067(\mathrm{~A})$ Examiner's Comments

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& \begin{tabular}{l}
This question required careful examination of a series circuit. The answer was very much dependent on knowing that 1.2 V was the p.d. across the \(2.0 \Omega\) and half of the resistance wire. Using total resistance other than \(10.0 \Omega\) led to incorrect value for the internal resistance. Less than about a third of the candidates secured full marks. Some of the most frequent difficulties were: \\
- Assuming the p.d. across the \(2.0 \Omega\) resistor was 1.2 V . \\
- Using 1.5 V as the terminal p.d. rather than 1.2 V . \\
- Experiencing problems rearranging the equation \(E=V+/ r\).
\end{tabular} \\
\hline \& \& \begin{tabular}{l}
As \(d\) increases the (total) resistance (of the circuit) increases (ORA) and therefore the current / / decreases (ORA) \\
Any one from: \\
- Explanation of \(V\) increasing in terms of \(V+I r=E\) or \(V+V_{r}=\) 1.5 or \(V=E\) - lost volts \\
- Explanation of \(V\) increasing in terms of potential divider \\
- Analysis showing \(V \approx 0.7 \mathrm{~V}\) when \(d=0\) or \(V \approx 1.3 \mathrm{~V}\) when \(d=1.0 \mathrm{~m}\) or any other value of \(V\) for a given \(d\)
\end{tabular} \& M1
A1

B1 \& | Allow 'As length (of wire) increases resistance increases' (ORA) |
| :--- |
| Allow 'lost volts / p.d across r/ Ir decreases, so V increases' |
| Examiner's Comments |
| The question required an explanation in terms of the current in the circuit as the distance d increased. Many candidates realised that the increase in the length of the resistance wire meant an increase in the total resistance of the circuit and hence, a smaller current in the circuit. Some went one step further and correctly concluded that V increases as the p.d. across the internal resistance decreases. A significant number of candidates either described the variation V with d without any explanation or guessed the physics. No credit could be given for answers such as 'the graph gets less steep' and 'the current changes because the electrons have to travel a longer length'. |

\hline \& \& Total \& 6 \&

\hline \& a \& \[
$$
\begin{aligned}
& R=\frac{230^{2}}{3500}=15.11 \\
& 15(\Omega)
\end{aligned}
$$

\] \& M1 \& | Allow calculation of current (15.2) and $R=V / I$ |
| :--- |
| Not $3500 / 230=15.2$ |
| Examiner's Comments |
| This question asked candidates to show that the resistance of one of the heaters was 15 Ohms. Some candidates divided 3500 W by 230 V which gave an answer of 15.2 A which was the current. If these candidates then divided 230 V by 15.2 A they still gained the mark. |

\hline \& \& $$
\begin{aligned}
& A=\pi \times 0.00055^{2}\left(=9.5 \times 10^{-7} \mathrm{~m}^{2}\right) \\
& L=\frac{15 \times 9.5 \times 10^{-7}}{1.6 \times 10^{-6}} \\
& 8.9(\mathrm{~m})
\end{aligned}
$$ \& C1

C1
A1

A \& | Note $8.9 \times 10^{\text {n }}$ scores two marks Allow 15.1 gives 9.0 m |
| :--- |
| Examiner's Comments |

\hline
\end{tabular}

				It was pleasing to see many good answers to the determination of the length of the wire. Candidates showed clearly how they determined the area and then substituted correctly into the rearranged equation for resistivity. Some candidates round their answer to one significant figure.
	ii	(Ohm's law states that) V proportional to I (provided the physical conditions / temperature remain constant) Since the temperature is not constant, Ohm's law will not apply	B1	Allow one mark for Ohm's law will not apply because as temperature changes the resistance changes Examiner's Comments Candidates often scored a mark for stating Ohm's law; candidates should define any symbols used. Candidates often did not refer to any temperature change in the heater. Vague answers referring to "heating" did not score.
		$\begin{aligned} & 3.5 \times 7 \text { or } 3.5 \times 7 \times 7 \text { or } 10.5 \times 7 \text { or } \\ & 10.5 \times 7 \times 7 \text { or } 514.5 \\ & 514.5 \times 7.6 p=£ 39.10 \text { or } £ 39.11 \end{aligned}$	C1 A1	Note for use of 17 hours $£ 94.96$ scores one mark Allow 3910p or 3911 p or $£ 39.1$ or $£ 39.102$ Examiner's Comments A surprising number of candidates did not correctly determine the cost of electricity. Many candidates did not use three heaters or seven days. For the award of the intermediate mark, clear working needed to be shown.
		Total	8	
3 0	i	$\begin{aligned} & R=V^{\prime} / P \text { or } P=V^{\prime} / R \\ & R=230^{2} / 1000=52.9 \text { or } 53(\Omega) \end{aligned}$	C1 A1	or $P=V /$ and $R=V / I$ with $I=4.34(\mathrm{~A})$ This is a 'show that' question so the A1 mark is for giving both the full substitution of values and the final answer. The final answer may be to 2 or more SF.
	ii	$\begin{aligned} & \text { number of turns, } n=180 / 1.5(=120) \\ & \text { length }(l=\pi d n)=3.14(\text { or } \pi) \times 0.014 \\ & \times 120=5.28(\mathrm{~m}) \end{aligned}$	C1 A1	This is a 'show that' question so the A1 mark is for giving both the full substitution of values and the final answer. The final answer may be to 2 or more SF.
	ii ${ }_{\text {i }}$	$A=(\rho / / R)=1.1 \times 10^{-6} \times 5.28 / 52.9$ $\begin{aligned} & A=0.11 \times 10^{-6}\left(\mathrm{~m}^{2}\right) \\ & \text { so swg }=28 \end{aligned}$	M1 A1 A1	allow 53 allow solution which calculates diameter of wire using $\pi d^{2} / 4$ rather than finding A give $\max 1 / 3$ for using data from the table, i.e. finding $R=53$ Ω using correct value of A or $d=0.37(\mathrm{~mm})$ the A marks cannot be-awarded unless the M mark is awarded. Examiner's Comments The purpose of this question was to challenge the candidates to use their knowledge to solve a laboratory based practical problem. The

4.2 Energy, Power and Resistance - Resistivity

				majority approached part (i) correctly by considering the power data for the fire element. A significant minority were drawn to the formula relating resistance and resistivity. Many of these realised that this approach was incorrect and changed to the correct approach. Here is a typical example (exemplar 2) of a script where the candidate continued to complete the whole question correctly. The rest remained at a loss and did not gain any marks for parts (ii) and (iii). Exemplar 2 $\begin{aligned} R=\frac{p l}{A} & =\frac{1.1 \times 10-6 \times 0.18 \times 14 \times 0.014}{\pi \times\left(\frac{0.014}{2}\right)^{2}} \\ & =\frac{V^{2}}{R} \quad R \end{aligned}$ In part (ii) a minority again tried the resistivity formula rather than an approach using geometry. Finally in part (iii) the resistivity formula was applied with success. The question overall proved to be a good discriminator of ability and understanding.
		Total	7	
3 1	i	$\begin{aligned} & 12000=\frac{Q}{4 \pi \varepsilon_{0} r} \\ & 12000=\frac{Q}{4 \pi \varepsilon_{0} \times 0.19} \\ & Q=2.5(4) \times 10^{-7} \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A0 } \end{aligned}$	Allow $E=(V / d=) 6.316 \times 10^{4}$ and $E=6.316 \times 10^{4}=\frac{Q}{4 \pi \varepsilon_{0} \times 0.19^{2}}$
	ii	$\begin{aligned} & t=78 \times 3600 \\ & 1 \begin{array}{l} \left(I=\frac{2.5 \times 10^{-7}}{77 \times 300}\right. \\ I=8.9 \times 10^{-13}(\mathrm{~A}) \end{array} \\ & \left(R=\frac{6000}{9.0 \times 10^{-13}} \text { or } 6.7 \times 10^{15}(\Omega) \text { or } V\right. \\ & =I R \text { and } R=\frac{\rho L}{A} \\ & 2 \quad \frac{6000}{9.0 \times 10^{-13}}=\frac{\rho \times 0.38}{1.1 \times 10^{-4}} \\ & \rho=1.9 \times 10^{12}(\Omega \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 0 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	There is no ECF from (b)(i) Note 2.54×10^{-7} gives an answer $9.0 \times 10^{-13} \mathrm{~A}$ There is no ECF from (b)(ii) 1 Take 12000 V as TE for this C1 mark, then ECF Note $8.9 \times 10^{-13}(\mathrm{~A})$ gives an answer $2.0 \times 10^{12}(\Omega \mathrm{~m})$
		Total	7	
3 2	i	Micrometer Repeat readings in different directions/along wire/different wires and average	B1 B1	Allow calliper Not vernier scale Examiner's Comments Most candidates were able to identify a suitable measuring

		$\left(\frac{0.1}{21}+\frac{0.02}{1.86}+2 \times \frac{0.01}{0.12}\right) \times 100=18(.2) \%$	A1	Allow 17.8\% Do not penalise significant figures Allow 1 mark for 9.88\% Allow 20% with evidence of working Examiner's Comments Many candidates clearly determined the percentage uncertainties on L, R and d which gained the first mark. A common final answer (which scored one mark) was 9.88% because candidates did not multiply the percentage uncertainty in d by two to allow for d^{2}. Some candidates attempted a maximum or minimum method - this was a long method and it was easy to make an error. When working out the maximum value, the maximum value of R and d needed to be used with the minimum value of L.
		Total	7	
3 3	i	Arrow in anticlockwise direction	B1	Allow this mark for correct direction shown on diagram either on or off connecting wires Examiner's Comments This question required the candidates to appreciate that the sum of the emfs will lead to an anticlockwise conventional current. This question was answered well by the majority of candidates, however a number put two directions on, one from each cell. Misconception The unusual setting out of the circuit meant that some candidates were unsure whether parts of the circuit were in series or parallel. This could have been overcome by following the circuit or even by redrawing it.
	ii	$\begin{aligned} & (E=) 4.5-2.4 \text { or }\left(\mathrm{R}_{\mathrm{T}}=\right) 0.80+0.50+ \\ & 1.2 \\ & 4.5-2.4=I \times(0.80+0.50+1.2) \\ & I=0.84 \text { (A) } \end{aligned}$	C1 C1 A1	$E=2.1(\mathrm{~V}) ; \mathrm{R}_{\mathrm{T}}=2.5(\Omega)$ Treat missing 1.2 resistance as TE Allow 2 marks for 2.8 (A); E = 6.9 V used Examiner's Comments This calculation required the candidate to set out the whole circuit in one. Around one third did not score any marks on this question as they attempted to treat each cell individually and then produce some form of average. Other common misunderstandings included treating the 0.5 ohm and 0.8 ohm resistors as if they were in parallel, and adding the emfs.

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \[
\begin{aligned}
\& (I=\text { Anev }) \\
\& 0.84=\pi \times\left(2.3 \times 10^{-4}\right)^{2} \times 4.2 \times 10^{28} \times \\
\& 1.60 \times 10^{-19} \times v \\
\& v=7.5 \times 10^{-4}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)
\end{aligned}
\] \& C1
A1 \& \begin{tabular}{l}
Possible ECF from (ii) \\
Note answer is \(2.5 \times 10^{-3}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)\) for \(I=2.76(\mathrm{~A})\) \\
Allow 1 mark for \(1.9 \times 10^{-4}\); diameter used as radius \\
Examiner's Comments \\
This question was well done by a large number of candidates, many of whom scored full marks by correctly following through with their value of current from the previous part. Few candidates used the diameter instead of the radius when determining the cross sectional area, and for the most part the setting out of the calculation meant that credit could be given even if arithmetic errors occurred later.
\end{tabular} \\
\hline \& \& \begin{tabular}{l}
Sensible suggestion, e.g. use a water bath / fan / only switch on when taking readings \\
Need to lower the temperature / reduce resistance of \(\mathbf{R}\)
\end{tabular} \& M1
A1 \& \begin{tabular}{l}
Allow keep the surroundings cold \\
Allow to keep the temperature / resistance constant OR allow increase in temperature increases resistance \\
Examiner's Comments \\
Candidates were expected to provide any method of cooling the circuit, or preventing it heating in the first place. A wide variety of solutions were given and as long it is viable, it was credited. \\
Misconception \\
Some candidates gave perfectly viable solutions, but these involved changes to the circuit, which was not allowed in the question. It is very important to make sure than any response does fit what is being asked.
\end{tabular} \\
\hline \& \& Total \& 8 \& \\
\hline \& a \& Any one from: current, temperature, light intensity and amount of substance / matter \& B1 \& \begin{tabular}{l}
Not: ampere, kelvin, candela and mole \\
Not correct quantity with its unit, \\
e.g. current in A or current (A) \\
Examiner's Comment \\
Most candidates could not state an unambiguous base quantity. There was no credit for a correctly named quantity accompanied by its S.I. unit, e.g. 'current in ampere'. Some answers were just wrong; these include force, charge, energy and kelvin.
\end{tabular} \\
\hline \& b i \& \[
\begin{aligned}
\& R=\frac{\rho L}{A} \quad \text { and } \quad A=\pi\left(\frac{d}{2}\right)^{2} \\
\& R_{X}=\frac{4 \rho L}{\pi d^{2}} \quad \text { and } R_{\mathrm{Y}}=\frac{8 \rho L}{\pi d^{2}} \\
\& \text { Clear steps leading to } R=\frac{12 \rho L}{\pi d^{2}}
\end{aligned}
\] \& M1

A1 \& | Examiner's Comment |
| :--- |
| Most candidates were familiar with the equations $R=\rho L / A$ and $A=$ |

\hline
\end{tabular}

				$\pi d^{2} / 4$. The modal score here was two marks. Most scripts had well- structured answers and demonstrated excellent algebraic skills. A variety of techniques were employed to determine the total resistance of the two resistors in series.
3				

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& \begin{tabular}{l}
\(\Omega \mathrm{m}\) or forgot to convert the millimetres into metres to get a value of \(0.48 \Omega \mathrm{~m}\). \\
- In (c)(iv), a significant number of low-end candidates, mentioned that resistivity of the wire did not depend on its physical dimensions, and therefore the resistivity value calculated will be the same. There was no reasoning in terms of gradient \(=\frac{\rho}{A E}\)
\end{tabular} \\
\hline \& \& Total \& 8 \& \\
\hline 3
6 \& i \& \[
(R=) \frac{6.0}{0.150}
\]
\[
R=40 \Omega
\] \& M1

A0 \& | Allow any correct value of $V(\pm 0.1 \mathrm{~V})$ divided by the correct value of $I(\pm 10 \mathrm{~mA})$ from the straight line for \mathbf{R} |
| :--- |
| Examiner's Comments |
| The majority of the candidates scored 1 mark here for clearly using the graph to show the resistance of \mathbf{R} to be 40Ω. Most used a data point from the straight line. A significant number also used the idea that the gradient of the straight line is equal to the inverse of the resistance. However, candidates are reminded that resistance is equal potential difference divided by current, but in this context of a straight line through the origin, determining resistance from the gradient was allowed. Of course, determining the gradient of a curve is simply incorrect physics for determining resistance. |

\hline \& ii \& \[
$$
\begin{aligned}
& \left(V_{\mathrm{L}}=\right) 1.4(\mathrm{~V}) \text { or }\left(V_{\mathrm{R}}=\right) 4.0(\mathrm{~V}) \text { or }\left(R_{T}\right. \\
& =6.0 / 0.1(\Omega) \\
& \left(V_{\text {terminal }}=\right) 5.4(\mathrm{~V}) \text { or }\left(V_{\mathrm{r}}=\right) 0.6(\mathrm{~V}) \text { or } \\
& (r=) 60-54(\Omega) \\
& r=6.0(\Omega)
\end{aligned}
$$

\] \& C1 \& | Allow full credit for other correct methods Possible ECF from (i) Allow $\pm 0.1 \mathrm{~V}$ for the value of $p . d$. from the graph |
| :--- |
| Note getting to this stage will also secure the first C1 mark |
| Allow 1 SF answer here without any SF penalt |
| Examiner's Comments |
| This was a discriminating question with many of the top-end candidates effortless getting the correct answer of 6.0Ω for the internal resistance r. The most common error was omitting the resistance of the filament lamp in the calculation. This gave an incorrect value of 20Ω for the internal resistance. Candidates doing this still managed to pick up 1 mark for the total resistance of 60Ω. |

\hline \& \[
$$
\begin{aligned}
& \text { ii } \\
& \text { i }
\end{aligned}
$$

\] \& | $\rho=\frac{40 \times 2.4 \times 10^{-6}}{8.0 \times 10^{-3}}$ |
| :--- |
| (Any subject) $\rho=0.012(\Omega \mathrm{~m})$ | \& C1 \& | Allow ECF |
| :--- |
| Allow 1 mark for either 0.018 for using $60 \Omega, 0.016(2)$ for using 54Ω or for 0.0018 for 6.0Ω |
| Examiner's Comments |
| The success in this question depended on understanding the term n in the equation $I=A n e v$ given in the Data, Formulae and |

\hline
\end{tabular}

